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Abstract 

Contradictory evidence has been reported on the effects of 
discovery learning approach and the role of instructional 
explanations. By manipulating the presence of instruction 
(verbal explanation) and transparency of problem structures, 
we investigated how effects of instructional explanations 
differed depending on the transparency of problem structure. 
We developed an auxiliary representational task that made 
certain aspects of the problem structure more transparent.   
Instruction proved irrelevant to those aspects of the problem 
made transparent by the representation but facilitated learning 
of those aspects that were left obscure.  We suggest that the 
critical role of instruction is not specifying the steps in 
solving a problem, but rather making salient the features that 
are critical to student’s ability to infer the steps from 
examples. 

Keywords: discovery learning, instruction, explanation, 
transparency of problem structure, representation.  

Introduction 

One of the central controversies in education is how much 
instructional guidance needs to be provided in a learning 
environment. Even if an optimal amount of instruction is 
identified in one learning environment, the effect might 
differ based on the use of other instructional factors. This 
study investigated how effects of instructional explanations 
differed in different instructional conditions.  

Debate over discovery learning and direct 
instruction 

Is it better to give students instructions about how to solve 
problems or is it better to allow students an opportunity to 
discover the knowledge for themselves? This question led to 
a long debate over effects of discovery learning versus 
direct instruction approach. Discovery learning approach is 
based on a constructivist theory of learning (Piaget, 1970) 
and it emphasizes learners’ active engagement in 
constructing their own knowledge. Learners are believed to 
be able to generate their own examples and explore them for 
learning.  

On the other hand, some researchers argue that the 
discovery learning approach has continuing advocates but 
without sufficient evidence (e.g., Mayer, 2004) and 
instructional guidance is critical to successful learning. In 
discovery learning students in effect have to generate their 
own worked examples by discovering solutions and making 
sense of their own solution steps. This can be at a 
disadvantage to providing instruction in that it can be costly 
both of time and working memory (e.g, Sweller, 1988) to 

generate the examples. Also, it can be at a disadvantage to 
providing instruction in that the structure of the solution is 
not explained. This often increases floundering thus students 
may never be able to discover what they are to learn 
(Ausubel, 1964).  

Both positive and negative effects of discovery learning 
have been reported in many different domains. Several 
studies demonstrated when students invented their own 
solution procedures, they showed better understanding of 
the domain than those who simply followed instructed 
solution procedures (e.g., Hierbert & Wearne, 1996; Kamii 
& Dominick, 1998). However, Rittle-Johnson (2006) 
reported an opposite finding. She found students who were 
directly taught a correct procedure showed better procedural 
transfer than those who were told to think of a new way to 
solve the problem without instruction.  

In the science domain, Klahr and Nigam (2004) showed 
direct instruction on control of variable strategy (CVS) led 
to better learning outcome and in turn subsequent transfer. 
However, Dean and Kuhn (2006) demonstrated direct 
instruction was neither necessary nor sufficient and instead 
practice appeared more important for enhancing students’ 
scientific inquiry skill. The benefits of direct instruction 
quickly disappeared without a long term engagement. 
Consistent with this finding, Brunstein, Betts, and Anderson 
(2009) also reported that discovery learning was more 
effective than direct instruction only when combined with 
high levels of practice in the domain of Algebra learning.  

Worked examples and instructional explanations  

In contrast to contradictory evidence with respect to direct 
instruction, there is strong evidence that learning is 
facilitated by the provision of worked examples (e.g., 
Carroll, 1994; Tuovinen & Sweller, 1999). Worked 
examples are believed to help students focus on relevant 
solution steps by reducing search activity that is irrelevant 
for problem schema acquisition. Provision of instruction and 
worked examples can be seen as orthogonal factors with 
discovery learning being the situation where the student has 
to generate solutions without the benefit of either examples 
or instruction. Even when worked examples are provided, if 
underlying solution steps are not explained and/or relevant 
features are not appropriately highlighted, students are left 
to generate own explanations to understand worked 
examples and discover relevant features for their learning. 
This process is not always successful. Sstudents often show 
illusion of understanding and fail to solve comprehension 
problems without instructional explanations (Renkl, 2002).  

However, instructional explanations can be also 
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detrimental by preventing learners from actively making 
sense of learning materials. For example, Schworm and 
Renkl (2006) found that provision of instructional 
explanations reduced learner’s self-explanation activities 
and in turn learning outcomes. Also, when instructional 
explanation was not presented in an integrated format, it can 
impair learning by increasing cognitive load (split-attention 
effect, Ward & Sweller, 1990).  

This suggests that provision of instructional explanation 
does not always guarantee a positive learning outcome (for 
review, see Wittwer & Renkl, 2008). For instruction to be 
helpful, it is not enough to simply specify solution steps. 
More importantly, it should reveal any hidden structure in a 
problem by making salient relevant features in the 
examples.  When instruction fails to perform this function, 
students will be left in a situation analogous to discovery 
learning and could well flounder. In this case, provision of 
instruction will have little effect or even a detrimental 
effect. At the same time, if this function can be performed 
by other scaffolding means, instruction may be irrelevant.   

We hypothesize that with appropriate scaffolding 
discovery learning becomes, in effect, a worked example 
condition where students provide their own worked 
examples and the scaffolding makes transparent critical 
features of the examples. To test this hypothesis, we 
developed an auxiliary representation task that made certain 
aspects of problem structure more transparent to learners 
and investigated how effects of instruction differed 
depending on the transparency of problem structure. We 
expect when the representation task reveals the hidden 
problem structure, provision of instruction will have little 
effect. On the other hand, when obscure relationships are 
not revealed, instruction will play a critical role and 
facilitate learning of those aspects that were left obscure.  

Experiment 

We adapted the computer-based tutoring system used by 
Brunstein et al. (2009). In this system, isomorphs of 
algebraic expressions are represented as data-flow diagrams 
with multiple boxes and arrows. The task involved selecting 
a part of boxes and filling in values into an empty portion of 
the box. This system allowed us to study college students 
learning anew the equivalent of algebra. 

Figure 1 illustrates stages of an example problem used in 
the tutor. An unknown number flows from the top box into 
the boxes below, the arithmetic operations are performed, 
and the final result is the 29 at the bottom. The student’s 
task is to determine what the unknown number is. The 
diagram in Figure 1(a) is equivalent to the algebraic 
expression, (5 - x) + (5 * x) = 29 while the diagram in 
Figure 1(c) is equivalent to 5 + 4x = 29.   

To solve these problems students can click on empty tiles 
in the boxes and enter values.  In the case of problem 1(c) 
the unknown value can be simply determined by 
“propagating” the number up from the bottom, unwinding 
the arithmetic operations – placing 24 in the empty tile 
above the 29 (equivalent to rewriting 5 + 4x = 29 as 4x = 

24), then 6 in the tile above it (equivalent to rewriting this as 
x = 6), and finally 6 in the top unknown box. However, in 
cases like 1(a), where two paths converge in a result, this 
simple procedure is not possible and at this point students 
must transform the graph in Figure 1(a) into the form in 
Figure 1(c). This step, called linearization, is the major 
conceptual hurdle in this artificial curriculum. 

 
(a) Selection task: Equivalent of (5 - x) + (5 * x) = 29 

 

Instruction: “Select the rectangular box with two little, 

empty boxes along with the rectangular box connected to 

it because they are in a loop connecting to a common 

rectangular box above.” 

Discovery: “Select three rectangular boxes.”  

(Arrows were not provided.) 

(b) Execution task  

 
Instruction: “The answer to this box is 4 because -1 + 5 is 

4”; “The answer to this box is 5.”  

(A corresponding arrow appeared for each statement.) 

Discovery: “Click a box and enter a number.” 

(Arrows were not provided.) 

(c) Result of linearization: Equivalent of 5 + 4x = 29 

 
 
Figure 1: Stages of an example problem. Depending on the 
instructional conditions, different hints were provided and 
examples are shown below the figures for direct instruction 
and discovery condition. 
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The linearization always involved two major subtasks: 
selection and execution. First, in the selection task, students 
have to select the appropriate rectangular boxes to 
“linearize”. In Figure 1(a), the correct boxes are indicated 
by arrows. After selecting these three boxes, clicking a 
linearize button transforms the data-flow diagram into the 
intermediate state in Figure 1(b). The challenge in this 
selection subtask is to determine what boxes have to be 
selected.  Diagrams vary in structure and Figure 1 is just one 
possibility. Participants have to find a loop that connects 
from the top unknown value to the bottom box with empty 
values and select all of the boxes in the loop except the top 
box of the loop. In the example in Figure 1(a), the loop 
starts from the top unknown box where two arrows diverge. 
Then the loop continues all the way down to the bottom box 
where the right and left branches finally rejoin. This 
convergence enables summation of left and right branches. 

Second, in the execution subtask, participants have to find 
what values to fill in on the transformed tree. Essentially 
they need to find the coefficient that multiplies the top 
unknown value and the constant. In this example, the 
selected boxes for linearization are simplified into the 
equivalent of (4 * x) + 5. The coefficient 4 (-1x + 5x = 4x) 
goes to the box next to “*” operator and the constant 5 goes 
into the box next to “+” operator. After filling in these two 
values, the diagram has been transformed into the linear 
form in Figure 1(c) and now users can apply the simple 
propagating strategy. The general characterization of the 
selection and execution rules worked in the same way across 
all problems.  

Above we have tried to explain the solution of these 
problems by reference to algebraic transformations.  
Students find propagating numbers easy and intuitive and do 
not seem to need any reference to algebra. One student 
described this as “like doing sudoku”. On the other hand, 
students find it hard to master linearization and reference to 
algebra seems to make this easier to explain and understand. 
By changing a representation format, from visual 
representation of a data flow diagram into a symbolic 
representation of an algebraic equation, the hidden structure 
of the problem is revealed and the required computations 
become a lot easier.  

The current study used this relation between data-flow 
structure and algebraic expression to manipulate the 
transparency of problem structure. We did this with an 
additional representation task. By having students re-
represent certain parts of the diagram into an algebraic form 
or an equivalent data-flow tree, the problem structure could 
become apparent or remain ambiguous. In particular, we 
expected that seeing algebraic equivalents would make the 
execution part of the linearization more transparent by 
showing the relationship between simplifying an algebraic 
expression and determining the values to be entered into the 
linearized diagram. It was less clear that showing students 
this representation would help them select the boxes for 
linearization because there is not a simple relationship 
between this selection task and simplifying algebraic 

expressions.  So, our specific hypothesis is that providing 
algebraic expressions will make instruction less important 
for the execution portion of linearization. 

Method 

Participants Fifty undergraduate students (29 male and 21 
female, M = 21 years, SD = 2.2 years) at the Carnegie 
Mellon University participated in the study. Participants 
received $10/hour plus performance based bonus.  
Design, materials, and procedures  
The study consisted of two sessions, learning session and 
transfer session. Each session lasted 2 hours and the transfer 
session occurred 2 days after the first session. Transfer task 
was identical across all experimental conditions and 
experimental manipulations occurred only during the 
learning session. The learning session had three different 
problem sections – propagate, easier linearize, and harder 
linearize problems. In the propagate problems, participants 
learned to propagate numbers up or down. These problems 
did not involve the use of linearize function and could be 
easily solved with simple arithmetic calculations. The easier 
and harder linearize problems involved the use of 
linearization and these two sections differed in terms of size 
of a loop. Although both sections required only single 
linearization, the latter had a larger loop. That is, 
participants had to select more boxes and this in turn made 
computation more complicated. Each subsection had one 
single demo problem (i.e., worked-example) and 30 
problems. Among the 30 problems, for the only first 
problem hints were always provided for each solution step 
and for the rest 29 problems hints were provided on request.  

A 2 x 2 between-subjects study was designed by crossing 
provision of instructional explanation (direct instruction vs. 
discovery) and representation task (algebraic expression vs. 
data-flow tree). First, there were two instructional 
conditions, direct instruction versus discovery. In the direct 
instruction condition, participants were given a worked-
example with verbal explanations about each solution step. 
By clicking the forward button, participants observed how a 
problem was solved in a sequential way. Text explanations 
appeared at the bottom of the page and provided general 
characterization of an action taken in each step (e.g., why 
certain boxes need to be selected, why a certain value is 
filled). This instruction was also available for later problems 
by clicking a hint button. 

In the discovery condition, verbal explanation was not 
provided although the identical step-by-step worked-
example was provided in the beginning of the learning 
session. Because no characterizations of actions were 
provided, participants were left to discover transformations 
by themselves. In this condition, participants could also use 
a hint button. However, the provided texts did not explain 
underlying principles of either selection or execution task. 
Instead, the hints simply provided instruction on interface 
issue such as “click a box and enter a number”. Examples of 
hints provided in direct instruction and discovery conditions 
are shown in Figure 1.  
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Across all conditions and all sessions, error messages 
appeared whenever participants made a mistake. In the 
direct instruction condition, participants could then find the 
correct answer by clicking the hint button. In the discovery 
condition, however, the hints only provided interface 
information and thus participants had to figure out the 
answer for themselves. The discovery learning condition 
was not pure discovery in that a demo problem was 
provided in the beginning of the learning session, hints on 
interface of the tutor were available on request, and 
immediate feedback was given via an error message. There 
never were any explanations and these features were present 
to minimize the floundering in discovering a solution. The 
distinction between two instructional types should be 
understood as a continuum and the most critical difference 
between these two conditions was presence or absence of 
verbal explanations. 

Second, the type of representation task was manipulated 
to manipulate the transparency of the problem structure. 
Students were asked to re-represent certain parts of the data-
flow diagrams either in an algebraic expression or in a data-
flow tree. In the expression condition, participants were 
asked to fill in algebraic expressions by copying numbers 
and operations from a diagram to an expression. Unknown 
values were already filled in as an X in the task. This task 
was to help students understand the problem structure by 
revealing the relation between the diagram and algebraic 
expression. In the tree condition, participants were asked to 
simply copy numbers and operators from a diagram to a 
tree. Figure 2 shows an example of each representation task. 
Students were asked to fill in empty tiles either in the 
algebraic expression (a) or in the tree (b). This 
representation task appeared whenever participants made an 
execution error (i.e., filling in wrong values in the 
linearization). In the demo problem or worked-example, the 
representation task was automatically performed by the 
system right after the diagram was transformed, between 
selection and execution task. Only in the direct instruction 
condition, the completed representation was used as part of 
instruction. Verbal explanations were given by highlighting 
relevant parts of the expression or tree. In the discovery 
condition, neither verbal explanation nor highlighting was 
provided.  

For each correct solution step, participants could earn 
money. To prevent people from relying on hints without 
efforts to solve problems, whenever people asked for hints, 
4 cents were deducted from their earned money. Also, when 
a linearization error was made, 2 cents were deducted. Until 
all parts were solved correctly, participants could not move 
on to the next problem. Time-on-task was controlled as 2 
hours for learning session therefore each participant solved 
different numbers of problems. Performances varied largely 
across participants and only some of the participants could 
finish all three problem sections on the first day of the 
study. Regardless of whether students could finish all or part 
of the sessions on the first day, they were given identical 
transfer test on the second part of the study. 

(a) Algebraic Expression 

 

 
(b) Data-flow Tree 

     
 
Figure 2: Examples of the representation task. Students 
were asked to fill in the empty portion of either an algebraic 
expression (a) or a tree (b) with numbers and operators.   
Given are the forms of the task before and after completion. 
 

On the second day session, identical transfer problems 
were given across all conditions. No worked examples and 
hints were provided. Like the first day session, an error 
message appeared when an error was made. There was only 
one problem type, multiple linearize problems, and this 
required multiple uses of linearization to solve the problem. 
On the first day, all problems involved only one single use 
of linearization. This made it a good bit more difficult to 
decide what boxes to select and what numbers to combine 
for a particular linearization. There were a total of 40 
problems and participants solved problems for 2 hours.  

At the end of the study, participants were given a 
questionnaire for demographic information and background 
in mathematics learning. Also, students were asked to 
verbally explain difficulties they had during the task and 
rules or strategies they used for selection and execution task.     

Results 

Out of 50, three participants felt lost and wanted to give up 
in the middle of the study. These participants were one from 
instruction-tree, one from discovery-expression, and one 
from discovery-tree and were excluded from the data 
analysis. Performance during the learning session varied in 
terms of problem solving speed, number of solved problems 
and use of hints. Especially, students in the discovery-tree 
condition solved the fewest problems. Therefore, we 
focused on the performance of transfer test. In this way, we 
can understand what 2 hours of practice under different 
instructional conditions mean for performance in a constant 
condition-transfer task. Please note that all participants were 
exposed to identical transfer conditions (no demo problem 
and no hints) regardless of the instructional conditions.   

On the transfer test, there were again large individual 
differences. Some participants could finish all 40 problems 
within 2 hours, but some could solve just less than 10 
problems. Like the pattern observed in the learning session, 
the discovery-tree condition had particular difficulty and 
could solve about 7 problems less than the other conditions. 
Due to the observed individual differences in terms of the 
number of solved problems, only the first 12 problems out 
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of 40 problems were chosen for analysis and the data from 
two participants who solved less than 12 problems were 
excluded from the analysis. One was removed from 
instruction-expression and the other was removed from 
discovery-expression condition. As a result, data from 45 
participants were analyzed: 12 from instruction-expression, 
11 from instruction-tree, 10 from discovery-expression, and 
12 from discovery-tree condition. 

Most of the errors participants made were from one of 
two categories. First type of the error was selection error 
and this error occurred when participants selected wrong 
combination of boxes for linearization. The second type of 
error was execution errors. Execution errors occurred when 
students filled in wrong values into a box. This could occur 
when students did not understand the rules to fill in boxes 
after linearization or made a computation error.  Analyses of 
covariance were performed using SAT math score reported 
by participants. To avoid undue effects of extreme values, 
numbers of selection errors and execution errors greater 
than 20 were recoded as 20. Although the data 
transformation did not change the overall pattern of the 
reported results, the recoded values tended to be from the 
discovery-expression condition.  

Table 1(a) shows adjusted mean number of selection 
errors (SE in parentheses) on the first 12 problems of the 
transfer test. Regardless of the type of representation task, 
students who received direct instruction made significantly 
fewer selection errors than those from discovery condition, 
F(1, 40) = 8.14, p = .007.  There was no overall effect of 
representation, F(1, 40) = 0.92. It is clear that the expression 
representation did not help the instruction subjects as the 
instruction-expression condition has slightly more errors 
than instruction-tree.  On the other hand, there was some 
advantage in the discovery condition for expression 
representation, but the instruction-by-representation 
interaction was not significant, F(1, 40) = 1.58. 

Execution errors in Table 1(b) show an opposite pattern 
from the one observed in selection errors. Regardless of 
instruction type, students who represented diagram in an 
algebraic expression made significantly fewer execution 
errors than those who did in a tree, F(1, 40) = 7.85, p = .008. 
There was no overall effect of instruction F(1, 40) = 0.31. 
For this measure, it is clear that instruction offered no 
further benefit to participants who saw the expression 
representation since the instruction-expression participants 
made more errors than the discovery-expression 
participants.   On the other hand, participants who had the 
tree representation seem somewhat helped by instruction, 
but again the instruction-by-representation interaction was 
not significant, F(1, 40) = 2.02.  

The expression representation task was intended to make 
apparent how to determine the values from the pre-
linearized diagram to place in the linearized diagram. It 
seems that providing such a task eliminates the need for 
instruction. With the algebraic expression in hand, 
participants were able to determine from the examples what 
the rules were.  On the other hand, the algebraic expression  

Table 1: Adjusted mean number of selection errors and 
execution errors (SE in parentheses) by instruction type and 
representation type. 

(a) Selection Instruction Discovery Average 

Expression 3.06 (0.54) 3.96 (0.60) 3.51 

Tree 2.90 (0.57) 5.21 (0.54) 4.05 

Average 2.98 4.58  

(b) Execution Instruction Discovery Average 

Expression 4.12 (1.73)   2.58 (1.90) 3.35 

Tree 6.67 (1.82) 10.19 (1.72) 8.43 

Average 5.95 6.39  
   
provided little insight into how to select the boxes for 
linearization and here instruction was critical. 

In both error measures, there was the suggestion that 
participants who had access to neither the algebraic 
expression or instruction had particular difficulty, although 
in neither case was the interaction significant.  Looking at 
total errors participants made 7.18 in the instruction-
expression condition, 6.54 in the discovery-expression 
condition, 9.57 in the instruction-tree condition, and 15.40 
in the discovery-tree condition.  There was no significant 
difference among the first three error totals, F(2, 29) = 0.35, 
while the discovery-tree condition was significantly worse 
than each of the other conditions. When there was nothing 
to reveal hidden problem structure (neither expression 
representation nor verbal instruction), students had 
particular difficulty. Many participants in this condition 
approached the solution by trying numbers randomly and 
this strategy particularly increased the number of execution 
errors.  

Conclusions 

To summarize the results, there were two major findings. 
First, direct instruction (verbal explanation) helped students 
find rules for selection as shown in fewer selection errors 
for students who were provided with instruction than those 
who were left to discover selection rules for themselves. 
Representation task did not have a significant affect on this 
aspect of problem solution. Second, only type of 
representation task (expression rather than tree 
representation) affected student’s success in finding rules 
for execution. Regardless of instruction type, students who 
re-represented a diagram into an algebraic expression 
showed fewer execution errors than those who copied a 
diagram into a tree. 

The most striking outcome of the experiment was the 
equivalent performance of instruction and discovery 
students with respect to calculation in the execution task 
given a representation that revealed the intermediate steps in 
performing the representation. When an algebraic 
expression was provided, structure of the problem appeared 
to become transparent and the instruction (verbal 
explanation) seemed irrelevant. Students were able to find 
rules for execution using algebraic expressions and this led 
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to better learning outcome.  This finding is also interesting 
in that symbolic representation is able to help understanding 
of visual representation. It is well known that many teachers 
use visual representation to help students understand 
mathematical symbolic notations. When learners are capable 
of symbolic reasoning like college level students in our 
study, symbolic representation also can be used to help 
understanding of other representations. This is consistent 
with the idea of “power of symbols” (Arcavi, 1994).  

In contrast to performance in the execution task, verbal 
explanation played an important role in finding rules for 
selection task. Without instruction, there was nothing to 
uncover the obscure rules for selecting boxes for 
linearization. Without verbal explanation, it was hard to 
notice the existence of loop (from the unknown top value, 
two paths converge at the box with two empty values). 
Provision of instruction seemed to highlight features that are 
critical to selection task and guide students to follow the 
verbal instruction and practice them. This conjecture was 
consistent with verbal reports provided in the debriefing 
session. When participants were asked to explain the rules 
of selection and execution, only students who were given 
verbal explanation used the word “loop” to describe their 
selection rules. In contrast, many students from discovery 
condition reported they could not really understand a rule 
for selecting boxes and simply tried to select different 
combinations of boxes in a trial-and-error manner.  

While not significant, the discovery-expression students 
showed the fewest execution errors. Their success depended 
on two features.  First they were provided enough guidance 
that they did not suffer undue floundering in discovering the 
solutions. Second, the presence of the expression made it 
possible to infer the correct rules from their solutions.   
Thus, instruction is irrelevant if the principles of solved 
examples (worked or discovered) are transparent. On the 
other hand, when the structure is not transparent instruction 
serves in effect to annotate the examples with the features 
critical to their solution. On this view, students learn from 
solved examples and not instruction; instruction or auxiliary 
representations can make transparent critical aspects of 
these examples. 

It should be possible to achieve the same equivalence of 
instruction and discovery students with respect to selection 
task by using a representation of the intermediate steps in 
selection. If relevant hidden steps were revealed by the 
tutoring system (e.g., visual loop highlighter so that students 
can actually identify the existence of a loop), it is expected 
that instruction would prove unnecessary for this aspect of 
the task as well. On this view, the major limitation of guided 
discovery is that students cannot always determine hidden 
structure. However, we should note in closing that this 
analysis does not imply any superiority for discovery 
learning, nor indeed were we able to find any statistically 
significant advantages. 
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